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Fig. 1: Overview. VB-Com enables humanoid robots (move direction in orange arrorw) to traverse dynamic terrains and obstacles (move direction in blue
arrorw). The perception deficiency is introduced by (a) suddenly appearing obstacles/hurdles, (b) deformable gaps, and (c) sensor occlusions. We demonstrate
the effectiveness of VB-Com on both robots of Unitree G1 and H1.

Abstract—The performance of legged locomotion is closely tied
to the accuracy and comprehensiveness of state observations.
“Blind policies”, which rely solely on proprioception, are consid-
ered highly robust due to the reliability of proprioceptive observa-
tions. However, these policies significantly limit locomotion speed
and often require collisions with the terrain to adapt. In contrast,
“Vision policies” allows the robot to plan motions in advance
and respond proactively to unstructured terrains with an online
perception module. However, perception is often compromised
by noisy real-world environments, potential sensor failures, and
the limitations of current simulations in presenting dynamic or
deformable terrains. Humanoid robots, with high degrees of
freedom and inherently unstable morphology, are particularly
susceptible to misguidance from deficient perception, which can

result in falls or termination on challenging dynamic terrains.
To leverage the advantages of both vision and blind policies, we
propose VB-Com, a composite framework that enables humanoid
robots to determine when to rely on the vision policy and when
to switch to the blind policy under perceptual deficiency. We
demonstrate that VB-Com effectively enables humanoid robots
to traverse challenging terrains and obstacles despite perception
deficiencies caused by dynamic terrains or perceptual noise.

I. INTRODUCTION

While legged locomotion control has been well-addressed
through reinforcement learning with effective data collection
[28, 12, 2, 44] and well-crafted reward guidance [29, 19,
36, 5, 23, 24, 30], the performance of such policies remains
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highly dependent on the accuracy and comprehensiveness of
state observations [33, 40, 25, 30]. The state space can be
roughly categorized into three types: 1) Accessible states,
which are reliable and obtainable on real robots, such as joint
encoders and IMU; 2) Privileged states [21, 22], which are
unavailable on real robots, including velocity and static hard-
ware parameters; and 3) External states [31, 23, 49, 24, 41],
which are observable but inherently noisy and occasionally
unreliable. Previous works [22, 21] have focused on encod-
ing historical accessible states to approximate privileged and
external states and these attempts on quadrupeds achieves
successful traversal of static unstructured terrains such as stairs
and slopes. However, these estimation methods often require
robots to physically interact with unstructured terrains before
responding [25, 9, 29], forcing a trade-off between sacrificing
speed to ensure safety or acting quickly but failing in scenarios
that demand rapid responses, potentially leading to falls.

To address this, perceptive locomotion methods have been
developed [7, 1, 42], enabling robots to anticipate incoming
terrains and plan motions in advance using onboard sensors to
obtain external states. Despite their impressive results, these
methods are heavily dependent on maintaining consistency
between perceived external states and those appeared during
simulation [18]. When mismatches occur, the robot may
exhibit abnormal or dangerous behaviors.

In practice, it is impossible to provide the robot with all
potentially encountered external states within the simulator
[47]. Current contact models in simulators are limited to
rigid-body interactions and it is computationally expensive to
incorporate dynamic terrains and obstacles during training [8].
Although previous research has highlighted the combination of
perception and proprioception to achieve robust locomotion
performance [31, 45, 10] against perception inaccuracy, these
studies have primarily focused on quadruped robots and low-
risk scenarios, where a delayed response to the environment
does not typically lead to locomotion failure.

Despite the impressive results of recent research achiev-
ing humanoid motions through tele-operation and imitation
learning [6, 20, 26, 16, 11, 15], the bipedal lower-limb
structure of humanoid robots presents unique challenges in
locomotion control compared to quadrupeds [13, 36]. The
shifting of the gravity center in humanoid robots makes them
more prone to unrecoverable falls. As a result, humanoid
robots are more vulnerable to unexpected physical interactions
given deficient perception. Consequently, current perceptive
humanoid locomotion studies are limited to static terrains and
confined environments, with performance heavily reliant on
the quality of the perception module [24, 49].

In this work, we propose VB-Com (Vision-Blind Composite
Humanoid Control), a locomotion policy capable of handling
dynamic obstacles and compensating for deficient perception.
VB-Com enables the robot to determine when to trust the
perception module for accurate external state observations
and when to disregard it to avoid misleading information
that could result in locomotion failures. To achieve this,
we first develop a vision policy that utilizes external visual

observations from an onboard perception module, and a blind
policy that relies solely on proprioceptive observations. The
policies are combined using two return estimators, trained
alongside the locomotion policies. These estimators predict
future returns for each policy based on the current state and
determining whether to rely on the vision policy or switch to
the blind policy. As demonstrated in Fig 1, in situations where
the onboard sensors fail to provide comprehensive perception,
VB-Com effectively enables the robot to quickly recover from
potential failures caused by deficient perception, allowing it to
traverse challenging terrains and obstacles. The contributions
of this work can be summarized as follows:

• A perceptive and a non-perceptive humanoid locomotion
policy that can traverse gaps, hurdles and avoid obstacles.

• A novel hardware-deployable return estimator that pre-
dicts future returns achieved by current policy condi-
tioned on proprioceptive states observation.

• A dual-policy composition system that integrates vision
and blind policies for robust locomotion through dynamic
obstacles and terrains where onboard sensors provide
deficient external perception.

II. RELATED WORK

A. Robust Perceptive Legged Locomotion

Typically, perceptive legged locomotion policies encode
external state observations from onboard sensors as inputs
of the policy network, allowing the robot to plan motions in
advance to navigate unstructured terrains and avoid penalties
for collisions or imbalance [24, 18, 17]. Generally, lidar-based
elevation maps [32, 18] and depth images [7, 1, 43, 27] are
widely used to acquire external state observations. However,
depth images are significantly affected by lighting conditions
and limited field of view, while lidar-based elevation maps
require time to construct, restricting their applicability to static
environments.

Since comprehensive perception cannot be guaranteed on
hardware, later studies have focused on integrating propriocep-
tive and exteroceptive observations to achieve robust locomo-
tion or navigation against deficient perception [31, 4, 45, 10,
37]. These approaches either employ a belief encoder that inte-
grates exteroceptive and historical proprioceptive observations,
or they address deficient perception at the path planning level.
However, none of these methods have demonstrated the ability
to perform rapid recovery actions in scenarios where deficient
perception could quickly lead to failure, such as stepping into
an unobserved gap and regaining balance before falling.

In this work, we address the mentioned challenge through
policy composition: The blind policy is activated when defi-
cient perception disrupts locomotion. Since both policies share
the same state and action space, the proposed method allows
the robot to recover from such situations quickly and safely.

B. Hierarchical Reinforcement Learning

Hierarchical reinforcement learning has been extensively ex-
plored in the literature, with the composition of low-level skills
emerging as a popular approach for addressing long-horizon



or complex tasks [35, 14, 3]. Among these works, value
functions play a crucial role in policy composition [39, 34, 46],
particularly in capturing the affordances of each sub-task. VB-
Com draws inspiration from these approaches by training two
return estimators, each representing the capabilities of the
vision and blind policies, respectively.

In addition, several works in legged locomotion have ex-
plored hierarchical structures, such as employing DAgger to
distill a set of locomotion skills [48]. Recent research [17] also
proposed a switching mechanism to achieve high-speed loco-
motion while avoiding obstacles. However, these frameworks
rely heavily on vision observations, making them intolerant to
perception outliers. In contrast, VB-Com addresses the novel
challenge of maintaining stable locomotion despite deficient
perception, with a specific focus on humanoid robots and high-
dynamic tasks.

III. PRELIMINARIES

A. Probelm Formulation

Reinforcement Learning based locomotion control is com-
monly modeled as a Partially Observable Markov Decision
Process (POMDP), characterized by the tuple (S,A,O,R).
In this formulation, the state space S represents the full state
of the robot and environment, including privileged information
and accurate terrain maps, whereas the observation space O
encompasses only partial and noisy observations obtained from
onboard sensors.

The control policy π(a|o), typically represented by a neural
network, maps observations o ∈ O to actions a ∈ A. Given
the reward functions r ∈ R and a discount factor γ, the policy
is trained to maximize the expected cumulative return:

J(π) = Eat∼π(ot)[

∞∑
t

γtr(st, at)]. (1)

In this work, we address a more challenging POMDP
task where the partial observations O include a potentially
unreliable component ov , which can fail under certain condi-
tions, leading to significant penalties or even task termination.
However, completely discarding ov would substantially limit
the theoretical performance of the policy. The ideal solution is
to enable the policy to recognize when ov becomes unreliable
and switch to relying solely on the reliable proprioceptive
observations op. We propose a composite solution to address
this challenge in this work.

B. Return Estimation

Building upon previous research, we employ Proximal
Policy Optimization (PPO) to train the locomotion policy
for its effectiveness in continuous control. In addition to
the actor policy π(a|o), we emphasize that a well-trained
policy also provides a practical approximation of the return
Q(s, a ∼ π) during the Generalized Advantage Estimation
(GAE) [38] process. The approximated composite returns will
be implemented to develop the proposed policy composition
mechanism.

C. Q-informed Policies Composition

Given a set of policies Π = {π1, π2, . . . , πn} that share
the same states, actions, and rewards (S,A,R), a composite
policy π̃ selects an action from the proposed action set
A = {ai ∼ πi(s)} with a probability Pw that is related to
their respective potential utilities. In the context of Markov
Decision Process, it has been proved [46] that selecting
actions based on the cumulative return at current states and
candidate actions will achieve the best expected return for
π̃. To this end, the Q-value based policies composition will
compute the cumulative return at current for each low-level
policy Q = {Qi(s, ai)|ai ∈ A} and construct a categorical
distribution to select the final action:

Pw(i) =
exp(Qi(s, ai)/α)∑
j exp(Qj(s, aj)/α)

, (2)

here α is the temperature. In the case of two sub-policies, such
composition will assign a higher probability to the action with
the higher Q-value at the current state.

IV. METHOD

A. System Overview

The proposed VB-Com framework (Fig 2) comprises a
perceptive locomotion policy πv and a non-perceptive policy
πb. πv incorporates visual observations to enable perceptive
locomotion, allowing humanoid robots to traverse complex
terrains such as high steps, gaps, hurdles, and to perform
obstacle avoidance. πb is trained within the same reward and
action space but does not accept external observations.

Once well-trained, πv and πb are expected to operate
stably on familiar terrains with corresponding observations
provided during training. Under such conditions, the VB-Com
framework prioritizes selecting actions from the vision-based
policy πv due to its more comprehensive observation of the
environment and higher expected return. However, when the
robot encounters outlier scenarios, such as perceptive deficien-
cies that the environments do not interact with the robot as
predicted by the vision-based observations ov , the blind policy
πb takes over, leveraging the relatively reliable proprioceptive
observations op to navigate such situations effectively.

VB-Com achieves the mentioned composition with two
return estimators, πe

v and πe
b , trained concurrently with the

locomotion policies. The estimators provide approximations
of the cumulative return that the system will obtain whther
chooses the vision or blind policy at the current step. During
deployment, the compositor operates based on the estimations
of the returns {Ĝe

v ∼ πe
v, Ĝ

e
b ∼ πe

b}, from which one executed
action is selected from the candidate actions {av ∼ πv, ab ∼
πb}.

B. Locomotion Policies

To demonstrate the quick responsiveness of VB-Com in
handling deficient perception, we train the locomotion policies
on challenging terrains, including gaps, hurdles, and high walls
(for obstacle avoidance), which require high joint velocities



Fig. 2: Overview of our framework: In VB-Com, we develop two locomotion policies—one perceptive and one non-perceptive—through single-stage training.
These sub-policies are integrated based on two return estimators, which predict future returns given the current state for each of the policy policy. This integration
enables seamless policy switching, allowing the robot to effectively adapt to varying levels of perceptual information and handle dynamic environments.

for traversal. This contrasts with the more common scenarios,
such as stairs and discrete steps, which have been the focus of
prior works. Drawing from previous experience, we adopt a
goal-reaching formulation rather than velocity tracking to train
the policies, as this approach is better suited for completing
highly dynamic tasks.

1) Observation Space: The policy observations ot consist
of two components: op, which includes the commands and
proprioceptive observations, and ov , which represents the
visual observations.

The commands are designed following [7], where direc-
tions are computed using waypoints placed on the terrain:
d = (p− x)/||p− x||, with p and x representing the locations
of the waypoints and the robot, respectively. To prevent sharp
directional changes, the robot is provided with directions to
the next two goal locations at each step, along with linear
velocity commands vc. These commands are represented as a
three-dimensional vector: ct = [d1,d2, vc]. The proprioceptive
observations consists of its joint position θt, joint velocity θ̇t,
base angular velocity ωt and gravity direction in robot frame
gt. The perceptive information ov is a robotic-centric height
map around the robot, as the hardware implementation detailed
in [24]. The perceptive observation is not provided while
training the blind policy πb.

As stated in the problem formulation, ot represents the ob-
servation space of the POMDP. Therefore, both op and ov are
domain-randomized during training to better simulate sensor
noise encountered in real-world scenarios. On the other hand,
the critic network, which is responsible for providing the actor
policy with accurate state evaluations, is allowed to access
privileged information. Building upon previous research, we
incorporate the accurate linear velocity vt, which plays an
essential role in legged locomotion tasks, as the additional
privileged information. Meanwhile, the proprioceptive and
perceptive states used in the critic network are not subjected
to noise. Additionally, we provide a larger height map to the

critic network (1.6m × 1.0m) compared to the one used in
the actor network (1.2m× 0.7m), which we found facilitates
faster adaptation of the robot to higher terrain levels during
curriculum learning.

2) Rewards: The majority of our reward functions are
adapted from [24, 7]. To align with the goal-reaching com-
mands in the observation space, we modify the task reward
to track the target direction and linear velocity commands
instead of angular velocity. We also include a series of
regularization rewards to encourage the humanoid robot to
exhibit natural locomotion and maintain gentle contact with
the ground. In addition, unlike previous research that treats
obstacle avoidance as a path planning problem, we enable the
robot to autonomously reach its goal while avoiding obstacles
at the locomotion level. This is achieved through a carefully
balanced trade-off between goal-reaching rewards and colli-
sion penalties. To acquire an accurate return estimation, we
focus the rewards on the proprioceptive states of the robot
rather than interactions with the environment. The reward
scales for both the blind and vision policies remain consistent
throughout the learning process. We achieve a unified policy
capable of simultaneously traversing obstacles, hurdles, and
gaps through the proposed reward setting.

3) State Estimation: A variety of approaches have been
proposed in legged locomotion to address POMDPs by con-
structing a belief state from historical observations, often
involving a second-stage training process or complex network
structure. In this work, we propose an efficient and simple
state estimator that predicts the next velocity vt+1 based on
the historical observation sequence ot−H:t. Both vt+1 and
ot−H:t are rolled out online from the collected trajectories
while the policy is being updated. A regression loss is used
to update the state estimator. We demonstrate that, with the
state estimator, a hardware-deployable locomotion policy can
be achieved through a single stage of training, enabling agile
locomotion tasks with high effectiveness and data efficiency.



C. Vision-Blind Composition

Given the vision policy πv and the blind policy πb, the
composition can be viewed as a discrete policy π̃ with an
action dimension of two, selecting between the candidate
actions:

π̃(a|s) = [ab ∼ πb, av ∼ πv]w,w ∼ Pw, (3)

Building on the analysis of Q-informed policy composition,
for each state st at each step, we have:

Pw(i|st, av, ab) ∝ exp(Q(st, ai)), ai ∈ {av, ab}. (4)

1) Policy Return Estimation: Given the current states st
of the robot, we can estimate the expected cumulative return
Gπi(st) for each policy to guide the composition process.
In practice, switching between the two independently trained
policies could cause abrupt changes in the performed actions.
For example, a switch from the vision policy to the blind
policy should help the robot avoid falling into an unseen
gap, which may require a sequence of actions from the blind
policy without the involvement of vision. To address this, we
introduce a switch period T , which acts as the control unit
for each switch. The introduction of T also helps decouple
the switching actions, approximately making them temporally
independent of each other.

To this end, we expect the return estimator to be responsible
for estimating a time sequence of expected returns over the
duration T , such that:

Lπi
= Et[Ĝ

e
πi
(st)−Gπi

(st:t+T )], (5)

To achieve the estimation with reduced bias and variance,
we implement λ-return to weight the time-sequenced returns
within one switch period as follows:

Gπi(st:t+T ) ≈ Gλ
πi
(st:t+T ) = (1−λ)

t+T∑
n=t

λn−1Gπi(sn), (6)

which represents a weighted return if the robot chooses to
switch to the low-level policy πi given the state st. In addition,
in order to mitigate the large variance between single-step
rewards and prevents the policy from overfitting to recent
batches, Gπi is computed based on the update of value
functions [38], where Gπi

(st) = Â(st) + V (st), with Â(st)
being the advantage function and V (st) the value function.

Since the return estimators need to be deployable on hard-
ware and we aim to mitigate perception misleadings, we avoid
using exteroceptive observations or privileged information as
inputs. Instead, we use the historical proprioceptive observa-
tion sequence opt−H:t

as the input to the return estimator πe.
2) Policy Switch: Unlike previous works that construct a

switch-based hierarchical framework to keep the robot within
a safe domain and prevent potential collisions, VB-Com
performs policy switching to recover the robot from getting
stuck due to perceptive deficiencies.

Ideally, equation 4 provides the theoretical basis for choos-
ing the action with the greater value estimation Ĝe

π at the

current state. This aligns with the fact that πv typically yields
higher returns than πb as long as the vision observations are
consistent with those seen during training, since πv has access
to more comprehensive environmental observations.

During deployment, when the robot experiences a sudden
environmental change that disrupts locomotion, both estima-
tions Ĝe

πv,b
will decline. We observe that in these situations,

it is difficult to maintain strict monotonicity such that Ĝe
πb

>

Ĝe
πv

due to the return approximation error introduced by πe.
Meanwhile, the blind policy demonstrates greater sensitivity
to unstable motions, as the low-return samples are more
frequently encountered even after the policy has been well-
trained, compared to πv (as illustrated in Fig. 5). To address
this, we introduce a threshold Gth trigger that can also prompt
the policy switch.

a ∼ π̃(st) =

{
av, if Ge

πv
(st) > Ge

πb
(st) > Gth,

ab, otherwise, (7)

Gth = 1/5

t∑
t−5

Ge
πb
(si)− α, (8)

here α is a threshold hyperparameter. In practice, we replace
Ge

πv
(st) with a smoothed window (length 5) to avoid sudden

abnormal estimations, which we have found to be effective
in real robot deployments. Additionally, a switch will not be
performed under conditions of high joint velocity to prevent
potential dangers caused by the abrupt switching of policies
when the robot is performing vigorous motion.

Fig. 3: We train the proposed framework on Unitree G1 and H1 humanoid
robots with the enabled collisions links (Ce

l ).

D. Implementation Details

1) Humanoid Robots: We implement VB-Com on two hu-
manoid robots, Unitree-G1 (G1) and Unitree-H1 (H1), in both
simulation and real-world environments (Fig 3). Both robots
are controlled using whole-body actions, with G1 having 20
control actions (10 upper-body and 10 lower-body joints) and
H1 having 19 control actions (8 upper-body, 10 lower-body
joints, and 1 torso joint). Since enabling all collision links
for the robot can result in significant computational overhead



(especially for G1), we activate a subset of collision links (Ce
l )

sufficient to accomplish the locomotion tasks, particularly for
the blind policy where prior contact is necessary. For example,
by enabling the hand collision on G1, the robot learns to reach
out its hands to touch potential obstacles and avoid them once
perception becomes deficient.

2) Perception & noise: We implement a robotic-centric
elevation map on both G1 and H1 to acquire external state
observations for the vision policy. The lidars mounted on
the robots’ heads serve as onboard sensors. Since the el-
evation map requires a smooth time window to integrate
newly observed point clouds into the map, it struggles with
dynamic scenes, presenting vision-deficient challenges that can
be effectively addressed by VB-Com.

We also introduce standard noise during the training of πb

to enhance its tolerance against deficient perception (Training
Noise in Fig 4). This includes 10% Gaussian noise and
random perception delays within the past 0.5 seconds. The
added perception noise aims to achieve relatively deployable
performance for πv . However, we demonstrate that πv fails to
handle a wider range of perception noise or dynamic obstacles
encountered in real-world scenarios.

V. RESULT

A. Setup

In this section, we evaluate VB-Com across the following
perspectives:

• Under what conditions does VB-Com demonstrate su-
perior performance compared to using a single-policy
approach?

• How does VB-Com outperforms baseline methods in
those scenarios?

• How well does the proposed return estimator contribute
to the composition system?

1) Evaluation Noise: To simulate situations where the robot
encounters perception outliers not present in the simulation, we
introduce a quantitative curriculum noise designed to mimic
varying levels of perception deficiency. As shown in Fig.
4, we focus on four types of noise: (1) Gaussian noise:
noise points sampled from a Gaussian distribution, to the
original heightmap. The noise level is scaled from 0.0 to
1.0, where the training noise level corresponds to a 0.1 noise
level in this scenario. (2) Shifting noise: replacing points in
the original heightmap with noise sampled from a Gaussian
distribution. The range of replacement points is controlled by
the noise level, where a 100% noise level results in a fully
noisy heightmap. The shifting direction can either be along
the heading direction (red box) or sideways (green box). (3)
Floating noise: The heightmap is displaced vertically, either
upwards or downwards, the floating noise simulates variations
in terrain height. (blue box).

2) Experiments Setup: In simulation, we conduct 10 × 3
experiments for each method across three types of terrain,
replicating the experiments three times to calculate the vari-
ance. Each episode involves the robot navigating through

Fig. 4: We present four types of perception noises and implement them on
heightmaps during evaluation: gaussian noise, forward shifting noise, lateral
shifting noise and floating noise.

TABLE I: Terrain Size Scales (m)

Terrain Length Width Heights

Gaps (0.6, 1.2) (0.6,0.8) (−1.8,−1.5)

Hurdles (0.8, 1.0) (0.1, 0.2) (0.2,0.4)

Obstacles (0.2,0.4) (0.2, 0.4) (1.4, 1.8)

8 goal points, with each goal paired with a corresponding
challenging terrain or obstacle. The size of the terrains is set
to the maximum curriculum terrain level, as shown in Table I.
The bolded values indicate the primary factors that contribute
to the difficulty for the terrain.

3) Baselines: We primarily compare VB-Com with the
vision and blind policies operating independently. Addition-
ally, as previous works have shown that robust perceptive
locomotion can be learned by incorporating various perception
noises during training [31], we add a Noisy Perceptive policy
baseline trained using the same noises implemented in the
evaluation. This allows us to examine how well the proposed
VB-Com policy performs compared to policies that have
already seen the evaluation noises. The evaluation noises are
introduced to the Noisy Perceptive policy in a curriculum
format during training, which evolves with the terrain level.

B. Example Case

First, we illustrate how VB-Com operates, specifically when
the composition switches to πb and how it effectively controls
the robot to traverse the terrain against deficient perception
(Fig. 5). We demonstrate 3 seconds of the estimated returns,
along with the policy composition phase, as the robot walking



Fig. 5: Illustrations of the variation in estimated return and action phases(0 for ab and 1 for av) across three concerned terrains.

through the challenging terrain during the simulation experi-
ments at the noise level of 100%. Before the robot encounters
challenging terrains, we observe that the estimated return
Ge

πv
(st) consistently exceeds Ge

πb
(st), as the robot is walking

on flat ground with relatively stable motion. This observation
aligns with the discussion in Section IV-C, where it was
explained that πv benefits from the external state observation
and results in a higher return Gt. This characteraistic ensures
the robot operates at πb while stable motion.

Once the deficient perception reaches the 100% noise level,
the robot will not be aware of the incoming challenging ter-
rains until it collides with them. At this point, we observe that
Ge

π(st) drops sharply within several control steps, prompting
the switch to the blind policy. This switch allows the robot to
respond to the terrain, and once the motion stabilizes, Ge

π(st)
returns to a normal level, at which point the vision policy
regains control. These cases demonstrate the effectiveness of
VB-Com, which responds quickly to deficient perception, but
avoids unnecessary switches to the blind policy when it is not
needed.

C. Evaluations on Different Noise Levels

VB-Com achieves robust locomotion performance under
different levels of perception deficiency. As shown in Tab
II, performance of the vision policy declines shaprly with
the arise of noise level. In addition, since the evaluation
experiments set the terrain curriculum to the maximum level,
the vision policy struggles even at a 0% noise level: It only
achieves around 73% goal-reaching success, with a termina-
tion rate exceeding 40%. This poor performance is likely due
to the severe challenge terrains, such as the farthest range of
the heightmap (0.85m) is only 0.05m wider than the width of
the gaps(0.8m). In contrast, VB-Com achieves a stable higher
goal-reaching success against different levels of perception
deficiency. In contrast, VB-Com achieves consistently higher
goal-reaching success across varying levels of perception defi-
ciency, including both noise and perception range limitations.

Despite the high goal-reaching success, we also include
additional metrics to further analyze the performance. The

reward values recorded throughout each episode indicate the
proposed method’s ability to achieve both goal completion and
collision avoidance. These rewards strongly correlate with the
robot’s success in reaching the target while minimizing colli-
sions. For instance, VB-Com at the 0% noise level achieves
the highest rewards(142.07), although the goal completion
rate(84.05) is slightly lower compared to the trail in 100%
noise level (84.81). This is because VB-Com switches to the
blind policy more often in 100% noise level, resulting in more
frequent collisions and lower rewards obtained.

The reach steps metrics indicates the smoothness of the pol-
icy in overcoming challenging obstacles. Since the switching
mechanism requires several steps to respond effectively, VB-
Com results in a higher number of reach steps as the noise
level increases. This is because, under higher noise conditions,
the system needs additional time to transition from the vision
policy to the blind policy, which leads to more gradual and
controlled responses to terrain challenges.

D. Comparisons with Blind Policy

VB-Com achieves less collision than the blind policy
when perception becomes less dificient. As shown in Tab II,
the blind policy achieves a relatively high Goals Completed
rate (83.76%), as its performance is unaffected by deficient
perception. Therefore, we include an evaluation of the collision
performance between VB-Com and the blind policy to further
highlight the advantage of the proposed framework. In our
evaluations, ”Collision Steps” is defined as the ratio of the
number of steps during which the robot collision model (Fig
3) makes illegal contact with the terrain or obstacles, relative
to the total number of steps within an episode.

We can observe from Tab II that the collision steps increase
with the noise level for VB-Com. Fig 6 provides a more
intuitive illustration: as perception becomes more comprehen-
sive, VB-Com achieves both fewer collisions and better goal-
reaching performance. In contrast, the blind policy maintains a
high goal-reaching rate but results in more collisions, while the
vision policy performs better in avoiding collisions when the
perception is accurate and comprehensive. As the noise level



TABLE II: VB-Com Evaluations

Noise Level Method Goals Completed(%) Rewards Average Velocity Fail Rate Collision Steps(%) Reach Steps

0% noise
VB-Com 84.05± 2.28 142.07± 4.19 0.71± 0.01 0.29± 0.01 1.50± 0.14 177.29± 4.66

Vision 73.57± 4.97 118.07± 10.42 0.73± 0.01 0.42± 0.07 1.39± 0.53 204.82± 28.91

30% noise
VB-Com 82.24± 6.6 132.81± 7.64 0.71± 0.01 0.34± 0.10 2.09± 0.13 178.13± 4.13

Vision 72.76± 2.29 115.20± 2.43 0.75± 0.02 0.43± 0.05 2.52± 0.32 195.58± 21.98

70% noise
VB-Com 82.48± 1.20 132.44± 6.17 0.70± 0.02 0.33± 0.03 2.12± 0.11 184.81± 4.47

Vision 55.38± 3.33 58.24± 13.97 0.73± 0.03 0.67± 0.07 6.08± 0.82 190.50± 18.28

100% noise
VB-Com 84.81± 6.45 129.99± 9.84 0.72± 0.02 0.29± 0.08 2.60± 0.68 182.29± 11.47

Vision 48.71± 5.60 47.53± 17.55 0.70± 0.06 0.69± 0.06 6.92± 1.36 268.40± 57.11

Noisy Perceptive 80.52± 0.91 116.94± 4.07 0.76± 0.02 0.32± 0.04 3.49± 0.38 154.98± 4.41

Blind 83.76± 1.35 131.29± 3.48 0.70± 0.01 0.33± 0.05 2.57± 0.27 184.08± 1.85

Fig. 6: We compare the collision and goal-reaching performances under
different noise levels. VB-Com achieves low collisions and high success rates
with accurate perception, and its success rate remains high under deficient
perception.

increases, the performance of VB-Com begins to resemble that
of the blind policy. These results demonstrate the effectiveness
of the composition system, which benefits from both sub-
policies to achieve better performance in terms of both goal-
reaching and minimizing collisions.

E. Comparisons with Noisy Perceptive Training

Compared to policies trained with noisy priors, VB-Com
achieves equivalent performance without prior knowledge
of the noise, while also demonstrating better training
efficiency and the ability to handle more challenging
terrain difficulties. The comparisons (Tab II) with Noisy Per-
ceptive policy show that the Noisy Perceptive policy achieves
a relatively high goal completion rate (80.52%) but exhibits
a higher collision step rate (3.49%). It can be concluded that,
as severe noise is introduced during evaluation, the heightmap
quickly becomes random noise with the increasing noise level.

Fig. 7: Comparisons between the Noisy Perceptive policy and VB-Com in
navigating gaps and hurdles separately.

In response, the Noisy Perceptive policy begins to exhibit
behavior similar to that of the blind policy—making contact
with obstacles and reacting when the noisy signals overwhelm
the external observations.

To further investigate the conditions under which the Noisy
Perceptive policy fails to surpass the performance of VB-Com,
we evaluate goal-reaching performance under different terrains
(Fig. 7). The results show that VB-Com outperforms the Noisy
Perceptive policy in gap terrains, while the Noisy Perceptive
policy performs better in hurdle situations, achieving a higher
success rate in preventing the robot from being tripped by
hurdles. However, recovering from missed gaps requires a
quicker response, or the robot risks falling. These results
demonstrate that the single-policy method fails to handle such
dynamic challenges effectively, highlighting the advantages of
the composition in VB-Com.

Moreover, the terrain level rises slowly for the Noisy Per-
ceptive policy (Fig. 8-(a)), and it fails to reach the maximum
level achieved by the vision and blind policies. This is because
the policy struggles with the trade-off of whether to trust
the external perception, which requires the addition of an
extra module to address the challenge. This slow progression
highlights the difficulty of handling high levels of perception



Fig. 8: Training curves for terrain levels and the return estimation loss.

deficiency, whereas VB-Com can efficiently navigate such
situations by leveraging the strengths of both the vision and
blind policies.

TABLE III: Return Estimation Evaluations

Method Goals Completed(%) Collisions Reach Steps

100-steps) 78.24± 1.86 2.49± 0.04 193.7± 3.2

RE(50-steps) 81.90± 2.81 2.75± 0.17 184.6± 1.4

Re(5-steps) 69.90± 7.34 5.23± 0.59 192.6± 3.3

Re(1-step) 59.57± 2.00 4.78± 0.16 167.4± 5.0

MC-based 74.14± 2.69 4.26± 0.56 192.8± 11.8

F. Return Estimator Evaluations

The proposed return estimator achieves accurate and
efficient return estimation with accessible states observa-
tions. Since we update the return estimator using temporal
difference, we compare it with the Monte Carlo-based search
return estimator that estimate the furtuen expected returns
with the following regression loss directly: Et[Ĝ

e
πi
(st) −∑t+T

t γtr(st, at)]. As shown in Fig. 8-(a), the MC-based esti-
mator struggles to converge due to the accumulation of noise.
In contrast, the proposed TD-based return estimator within
the vision policy convergent stably as it updates alongside the
locomotion policy. The results in Tab III further highlight the
ineffectiveness of the MC-based return estimator in providing
accurate estimations to guide the policy composition. Specif-
ically, the MC-based estimator struggles to respond promptly
to collisions with obstacles, this delay in response leads to
larger collisions and longer reach steps, as the policy cannot
effectively adjust its actions in real-time.

We also evaluate the impact of different switch periods
(T), which define the expected return duration during
return estimator updates. While training performance re-
mains consistent across varying periods, we observe that
excessively short switch periods can negatively impact system
performance. In such cases, the two policies may conflict,
resulting in incomplete motion trajectories when traversing the
challenging terrains and failures.

We observe that training effectiveness is highly depen-
dent on data variance. For instance, the estimator within
vision policy converges the fastest due to its access to more
accurate and comprehensive state observations, leading to
fewer low-return instances. In contrast, the estimator within
Noisy Perceptive and blind policies encounter more collisions
and lower returns, causing their loss to degrade more slowly.

We demonstrate that the estimated return threhold Gth

is crucial to the performance of VB-Com. Tab IV evaluates
the system’s performance under different values of α, as well
as without Gth. The results demonstrate that Gth is critical
for mitigating miscorrection during motion abnormalities, and
that a value of α < 1.0 ensures a sensitive response to the
states that could lead to motion failures.

TABLE IV: Estimated Return Threhold Evaluations

Method Goals Completed(%) Collisions Reach Steps

α = 2.0 77.10± 4.71 2.63± 0.68 185.11± 7.17

α = 0.5 85.76± 2.88 2.29± 0.17 186.96± 3.83

α = 0.1 84.43± 1.23 2.10± 0.25 184.35± 6.27

w/o Gth 48.48± 1.28 6.24± 0.41 261.96± 35.63

G. Real-World Experiments

We deploy the proposed system on both the Unitree G1
and Unitree H1 robots and evaluate the performance of the
proposed VB-Com method.

1) Hardware Return Estimations: We illustrate how VB-
Com operates on real robots by plotting 4 seconds of the esti-
mated return while the robot avoids static (left) and dynamic
(right) obstacles (Fig 9). The results demonstrate that, for static
obstacles (a standing person), the elevation map can accurately
perceive the obstacle, allowing the robot to plan motions in
advance and avoid collisions. Corresponding to this behavior,
we observe that the estimated return on the G1 stays a high
value, with Ĝe

πb
slightly lower than Ĝe

πv
, consistent with the

scenario where the vision policy continues to operate within
VB-Com.

On the other hand, when a person moves towards the
robot at high speed, the perception module fails to detect
the obstacle, causing a collision, both Ĝe

πb
and Ĝe

πv
decline

sharply upon collision. However, VB-Com quickly switches to
πb to avoid the person, demonstrating the rapid response to
collision provided by the proposed return estimation and
the successful obstacle avoidance capability of VB-Com
under perceptual deficiency.

2) Avoid Obstacles: In this section, we make comparisons
between VB-Com along with the vision policy and blind pol-
icy on G1 (Fig 10), to demonstrate the superior performance
of VB-Com in hardware compared with signle policies. In the
evaluation scenario, G1 encounters two consecutive obstacles
along its path. The second dynamic obstacle obstructs the
robot’s direction before the elevation map can perceive it. VB-
Com enables the robot to avoid the static obstacle without



Fig. 9: Illustrations of the variation in estimated return under static/dynamic obstacles in hardware experiments.

Fig. 10: Real-world comparisons of VB-Com, vision, and blind policies in
obstacle avoidance on the G1.

collision and subsequently avoid the dynamic obstacle after it
collides with the suddenly appearing obstacle.

In contrast, for the baseline policies, the blind policy makes
unnecessary contact with the static obstacles before avoiding
them, which damages the environment. As for the vision
policy, the robot collides with the obstacle and is unable
to avoid it until the newly added obstacle is detected and
integrated into the map.

3) Performance Against Deficient Perception: In this sec-
tion, we demonstrate the ability of VB-Com to traverse
challenging terrains given deficient perception (Fig. 11). We
provide zero inputs for the heightmaps to evaluate the perfor-
mance of VB-Com under perceptual deficiency. We introduce
two consecutive hurdles, and the robot successfully recovers
after colliding with them by switching to πb. Additionally, we
demonstrate that VB-Com enables recovery from a missed step
on an unobserved gap. In this case, VB-Com saves the robot
by performing a larger forward step to traverse the gap without
perception, as the blind policy has learned during simulation.

Fig. 11: Hardware demonstrations on the robots traversing gaps and hurldes
given deficient perception with VB-Com.

VI. CONCLUSION AND LIMITATIONS

In this work, we propose VB-Com, a novel humanoid
locomotion control framework that successfully combines the
strengths of both vision and blind policies to enhance the
performance of humanoid robots in dynamic, unstructured
environments. VB-Com achieves dynamically switching be-
tween vision and blind policies based on return estimations,
enabling the robot to navigate more efficiently in complex
terrains against perception. Extensive evaluations on obstacles
and dynamic terrains demonstrate that VB-Com outperforms
both vision-only and blind-only policies. Additionally, the
system’s deployment on Unitree G1 and H1 robots confirms
its practical viability. This work underscores the potential
of policy composition to tackle the limitations of traditional
approaches and improve the robustness and adaptability of
perceptive humanoid locomotion.

A key limitation of this work is that the performance upper
bound is constrained by the simulated terrains encountered
during training. Specifically, for unobserved gap terrains, the



proposed method may fail if no suitable steppable terrain is
available when the robot attempts a larger step for recovery.
To address this limitation, future work will explore the in-
corporation of additional sub-policies to better handle such
challenging scenarios and further improve the robustness of
the system.
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APPENDIX A
REWARD FUNCTIONS

The reward functions used during training for both the H1 and G1 are shown in Table V. We categorize the rewards into three
types: task rewards, which guide the robot in tracking goal points and avoiding collisions (important for obstacle avoidance);
regularization rewards, which impose constraints on smooth motion and hardware protection; and motion style rewards, which
enforce constraints for a human-like whole-body motion style. The target base height htarget for G1 is set to 0.728m, The
minimum feet/knee lateral distance for G1 and H1 is set to dg1min = 0.18m and dh1min = 0.25m.

TABLE V: Rewards

Reward Equation Weight: H1 Weight: G1

Task Rewards
Tracking Goal Velocity min(vc, ∥vxy∥)/vc 5.0 2.0
Tracking Yaw exp {(p − x)/||p − x||} 5.0 2.0
Collision

∑
i∈Ce

l
1 {∥fi∥ > 0.1} -15.0 -15.0

Regularization Rewards
Linear velocity (z) v2z -1.0 -1.0
Angular velocity (xy) ∥ωxy∥22 -0.05 -0.05
Orientation ∥gx∥22 + ∥gy∥22 -2.0 -2.0
Joint accelerations ∥θ̈∥22 −2.5× 10−7 −2.5× 10−7

Joint velocity ∥θ̇∥22 −5.0× 10−4 −5.0× 10−4

Torques ∥ τ
kp

∥22 −1.0× 10−5 −1.0× 10−5

Action rate ∥at − at−1∥22 -0.3 -0.3
Joint pos limits RELU(θ − θmax) + RELU(θmin − θ) -2.0 -2.0
Joint vel limits RELU(θ̂ − θ̂

max
) -1.0 -1.0

Torque limits RELU(τ̂ − τ̂max) -1.0 -1.0

Motion Style Rewards
Base Height (h− htarget)2 -0.0 -10.0
Feet Air Time

∑2
i∈feet

(
tair,i − 0.5

)
· 1 {first ground contact} 4.0 1.0

Feet Stumble
∑

i∈feet 1
{∣∣fxy

i

∣∣ > 3 |fz
i |
}

-1.0 -1.0
Arm joint deviation

∑
i∈arm |θi − θdefault

i |2 -0.5 -0.5
Hip joint deviation

∑
i∈hip |θi− θdefault

i |2 -5.0 -0.5
Waist joint deviation

∑
i∈waist |θi− θdefault

i |2 -5.0 -0.0
Feet distance (∥pleft foot − pleft foot∥ − dmin) 1.0 0.0

Feet lateral distance
(
∥py

left foot − py
right foot∥ − dmin

)
10.0 0.5

Knee lateral distance
(
∥py

left knee − py
right knee∥ − dmin

)
5.0 0.0

Feet ground parallel
∑

i∈feet Var(pz
i ) -10.0 -0.02

APPENDIX B
IMPLEMENTATION DETAILS

TABLE VI: Implementation Details

Networks Hiddern Layers
Actor [512, 256, 128]
Critic [512, 256, 128]
Return Estimator [512, 256, 128]
Vel Estimator [512, 256, 32]
Terrain Encoder [128, 128, 64]

Hyperparameters Values
Heightmap Range Forward (m) [−0.35, 0.85]
Heightmap Range Lateral (m) [−0.35, 0.35]
Velocity Command Range (m/s) [0.0, 1.0]
Yaw Command Range (rad/s) [−0.5, 0.5]

Curriculum Ranges (TL: Terrain Level)
Gap Width Curriculum Range (m) [0.1 + 0.5 ∗ TL, 0.2 + 0.6 ∗ TL]
Hurdles Heights Curriculum Range (m) [0.1 + 0.1 ∗ TL, 0.2 + 0.2 ∗ TL]
Obstacles Length Curriculum Range (m) [0.1 + 0.1 ∗ TL, 0.2 + 0.2 ∗ TL]
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